天桥教育资源网,欢迎您

级数收敛的必要条件怎么理解(数学分析之数项级数)

100次浏览     发布时间:2024-09-11 10:33:04     编辑: 文话教育 当前位置: 首页 > 知识大全 >

数项级数,这个理论实际上是数列极限理论的另一种表现形式。数列是一列数如a1,a2,a3...;数项级数是无限个数相加的问题如a1+a2+a3+....+an+...。这些无限相加的问题是否有意义,怎么判断是否有意义,以及是否满足通用的运算律,如加法交换律,乘法结合律等,这是数项级数要讨论的问题。

第1节:数项级数的概念与性质:

  • 数项级数或者称无穷级数(简称级数)表达式:Σan = a1+a2+a3+...+an+... ;其中an是通项
  • 前n项和 sn=Σa1+a2+a3+...+an
  • 如果由部分和组成的数列{sn}收敛于s,则级数Σan收敛,反之级数发散
  • 约定lim sn=±∞ n->∞,称发散到±∞
  • 柯西收敛准则:说明了级数Σan收敛的充分必要条件
  • 级数收敛的必要条件:通项->0,即 lim an = 0 n->∞
  • 级数具有线性性质
  • 定理:级数收敛,则在表达式中任意加括号,不影响收敛性

第2节:正项级数

  • 正项级数:每一项都是正的,是同号级数的一种,另一种同号级数是负项级数
  • 正项级数收敛判别法:充要条件:部分和数列{sn}有上界
  • 正项级数收敛判别法:柯西积分判别法:f(x)在[1,∞)单调递减,且非负,则级数Σf(n) 与无穷积分∫f(x)dx |1->+∞ ;该定理沟通了积分与级数的关系,其实来源于定积分的定义
  • 对于正向级数判别法:还有柯西根植法(包括柯西根植法的极限形式),Alembert比值法 和 Raabe判别法

第3节:一般项级数

  • 绝对收敛:Σ|an| 收敛,则Σan为绝对收敛
  • 条件收敛: Σan收敛,但 Σ|an|发散,则称Σan为条件收敛
  • 定理:绝对收敛必收敛(简记形式)
  • 交错数列:项是正负相间的
  • 莱布尼兹级数:对于交错级数,它的{an}单调递减趋于零
  • 收敛性判断:莱布尼兹级数必收敛
  • 还有迪利克雷判别法和阿贝尔判别法,都作为定理给出

第4节:绝对收敛和条件收敛的性质

  • 收敛级数具有可具有可结合性
  • 收敛级数的重排或者称为交换性,绝对收敛的的重排也绝对收敛
  • 黎曼定理:级数条件收敛,则存在序列{an}的一个重排{a`n} 使得Σa`n=A
  • 级数的乘积:柯西定理:Σan;Σbn绝对收敛,且 Σan=A;Σbn=B;则任意方式排出的级数都是绝对收敛,且其和=AB
本文标签:无